JUDGMENT AGGREGATION JUNE PROJECT: AGENDA CHARACTERISATION

Zoi Terzopoulou

Institute for Logic, Language, and Computation University of Amsterdam

6/6/2018

(based on the slides of Ulle Endriss)

GOALS

We continue with looking into agendas that can be associated with "well-behaved" judgment aggregation.

• *Existential Agenda Characterisation*: Fix a class of aggregation rules by means of fixing some axioms. For what kinds of of agendas is there a <u>consistent rule</u> in that class?

See two survey papers:

C. List and C. Puppe. Judgment Aggregation: A Survey. In P. Anand, P. Pattanaik, and C. Puppe (eds.), *Handbook of Rational and Social Choice*. OUP, 2009.

U. Endriss. Judgment Aggregation. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A.D. Procaccia (eds.), *Handbook of Computational Social Choice*. CUP, 2015.

AXIOMS

We use the following axioms (the last one is new!) for rules F:

- Neutrality: $N_{\varphi}^{J} = N_{\psi}^{J}$ implies $\varphi \in F(J) \Leftrightarrow \psi \in F(J)$.
- Independence: $N_{\varphi}^{J} = N_{\varphi}^{J'}$ implies $\varphi \in F(J) \Leftrightarrow \varphi \in F(J')$.
- Monotonicity: $N_{\varphi}^{J} \subset N_{\varphi}^{J'}$ implies $\varphi \in F(J) \Rightarrow \varphi \in F(J')$.
- Dictatorship: There exists an agent i^* (the dictator) such that $F(\mathbf{J}) = J_{i^*}$ for every profile \mathbf{J} . Otherwise, F is nondictatorial.

You see how non-dictatorship is a weakening of anonymity? 🜟

うして ふゆ く は く は く む く し く

AN EXISTENTIAL AGENDA CHAR. THEOREM

THEOREM (NEHRING AND PUPPE, 2007)

For $n \ge 3$, there exists a neutral, independent, monotonic, and nondictatorial aggregator that is complete and consistent for the agenda Φ iff Φ has the MP.

The right-to-left direction follows from our previous Theorem: Suppose Φ has the MP. Then:

- ▶ The majority rule will be consistent and complete.
- \blacktriangleright So there exists a rule with all the required properties. \checkmark

Next we will prove the impossibility direction (left-to-right).

K. Nehring and C. Puppe. The Structure of Strategy-proof Social Choice. Part I: General Characterization and Possibility Results on Median Space. *Journal of Economic Theory*, 135(1):269–305, 2007.

A VERY USEFUL NOTION: WINNING COALITIONS

F is *independent* iff there is a family of *winning coalitions* of agents $\mathcal{W}_{\varphi} \subseteq 2^{\mathcal{N}}$, one for each φ , s.t. $\varphi \in F(\mathbf{J}) \Leftrightarrow N_{\varphi}^{\mathbf{J}} \in \mathcal{W}_{\varphi}$.

F is *independent and neutral* if furthermore we have $\mathcal{W}_{\varphi} = \mathcal{W}_{\psi}$ for all formulas $\varphi, \psi \in \Phi$. So we can simply write \mathcal{W} .

Now suppose F is independent and neutral, and defined by \mathcal{W} :

- ▶ *F* is *monotonic* iff \mathcal{W} is upward closed: $C \in \mathcal{W}$ and $C \subseteq C'$ entail $C' \in \mathcal{W}$ for all $C, C' \subset \mathcal{N}$.
- ▶ *F* is *complete* iff $C \in W$ or $\overline{C} \in W$ for all *C*. (why? \bigstar)
- ► *F* is *complement-free* iff $C \notin W$ or $\overline{C} \notin W$ for all $C \subseteq \mathcal{N}$.

(Note that here we assume that Φ has at least two atoms.)

PROOF PLAN: IMPOSSIBILITY DIRECTION

We will show that: If a rule F is *neutral*, *independent*, *monotonic*, *complete*, and *consistent* for an agenda Φ violating the MP, then F must be a dictatorship.

So suppose F has these properties and Φ violates the MP. By *independence* and *neutrality*, there is a (single) family $\mathcal{W} \subseteq 2^{\mathcal{N}}$ of winning coalitions for $F: \varphi \in F(\mathbf{J}) \Leftrightarrow N_{\varphi}^{\mathbf{J}} \in \mathcal{W}$. We will show that \mathcal{W} is an *ultrafilter* on \mathcal{N} , meaning that:

(I) The *empty coalition* is not winning: $\emptyset \notin \mathcal{W}$

(II) Closure under intersections: $C, C' \in \mathcal{W} \Rightarrow C \cap C' \in \mathcal{W}$. (III) Maximality: $C \in \mathcal{W}$ or $\overline{C} \in \mathcal{W}$.

In the end, using the finiteness of \mathcal{N} , we will show that $\mathcal{W} = \{C \subseteq \mathcal{N} \mid i^* \in C\}$ for some $i^* \in \mathcal{N}$, i.e., F is *dictatorial*.

(I) THE EMPTY COALITION IS NOT WINNING

We will use *monotonicity* and *complement-freeness*: For the sake of contradiction, assume $\emptyset \in \mathcal{W}$.

- From monotonicity (i.e., closure under supersets): $\emptyset \in \mathcal{W}$ implies that $\mathcal{N} \in \mathcal{W}$.
- ▶ But now consider some profile J with $p \in J_i$ for all individuals $i \in \mathcal{N}$. (why can we take such a J? \bigstar)
- Then, $N_p^J = \mathcal{N}$ and $N_{\neg p}^J = \emptyset$.
- ▶ That is, $p \in F(\mathbf{J})$ and $\neg p \in F(\mathbf{J})$, as both \mathcal{N} and \emptyset are winning coalitions.

• Contradiction with complement-freeness. \checkmark

(III) MAXIMALITY (EASY FIRST)

We will use *completeness*:

- Take any coalition C and formula φ .
- Construct a profile \boldsymbol{J} with $N_{\varphi}^{\boldsymbol{J}} = C$.
- From completeness: $\varphi \in F(\mathbf{J})$ or $\sim \varphi \in F(\mathbf{J})$.
- ▶ Then from \mathcal{W} -determination of $F: N_{\varphi}^{J} \in \mathcal{W}$ or $N_{\sim\varphi}^{J} \in \mathcal{W}$.

うして ふゆ く は く は く む く し く

- ▶ From completeness and complement-freeness of F: $N_{\sim \varphi}^{J} = \overline{N_{\varphi}^{J}}.$
- ▶ Finally, all this means that $C \in \mathcal{W}$ or $\overline{C} \in \mathcal{W}$. ✓

(II) CLOSURE UNDER INTERSECTIONS

We use: *MP-violation, monotonicity, consistency, completeness.* MP-violation: there is a *mi subset* $X = \{\varphi_1, \ldots, \varphi_k\}$ with $k \ge 3$. We can construct a complete and consistent profile J with these properties (everyone accepts k - 1 of the propositions in X):

$$N_{\varphi_1}^J = C.$$

$$N_{\varphi_2}^J = C' \cup (\mathcal{N} \setminus C).$$

$$N_{\varphi_3}^J = \mathcal{N} \setminus (C \cap C'), \text{ thus } N_{\sim \varphi_3}^J = C \cap C'.$$

$$N_{\psi}^J = \mathcal{N} \text{ for all } \psi \in X \setminus \{\varphi_1, \varphi_2, \varphi_3\}.$$

Then, suppose that $C, C' \in \mathcal{W}$.

- $\bullet \ C \in \mathcal{W} \Rightarrow \varphi_1 \in F(\boldsymbol{J}).$
- (monotonicity) $C' \in \mathcal{W} \Rightarrow C' \cup (\mathcal{N} \setminus C) \in \mathcal{W} \Rightarrow \varphi_2 \in F(J)$
- (maximality) $\emptyset \notin \mathcal{W} \Rightarrow \mathcal{N} \in \mathcal{W} \Rightarrow X \setminus \{\varphi_1, \varphi_2, \varphi_3\} \subseteq F(J)$
- $\blacktriangleright \text{ (consistency) } \varphi_3 \notin F(\mathbf{J}) \Rightarrow \sim \varphi_3 \in F(\mathbf{J}) \Rightarrow \underset{\frown}{C} \cap \underset{\frown}{C'} \in \mathcal{W}. \checkmark$

DICTATORSHIP

We have shown that:

(I) The *empty coalition* is not winning: $\emptyset \notin \mathcal{W}$

- (II) Closure under intersections: $C, C' \in \mathcal{W} \Rightarrow C \cap C' \in \mathcal{W}$.
- (III) *Maximality*: $C \in \mathcal{W}$ or $\overline{C} \in \mathcal{W}$.

From (I) and completeness, we have that $\mathcal{N} \in \mathcal{W}$.

Contraction Lemma: if $C \in \mathcal{W}$ and |C| > 2, then $C' \in \mathcal{W}$ for some $C' \subset C$. <u>Proof:</u> Let $C = C_1 \amalg C_2$. If $C_1 \notin \mathcal{W}$, then $\overline{C_1} \in \mathcal{W}$ by maximality. But then, $C \cap C_1 = C_2 \in \mathcal{W}$ by closure under intersections. \checkmark

Recall that \mathcal{N} is *finite*. By induction (\bigstar) : $\{i^*\} \in \mathcal{W}$ for one $i^* \in \mathcal{N}$, i.e., $\mathcal{W} = \{C \subseteq \mathcal{N} \mid i^* \in C\}$. That is, i^* is a *dictator*. \checkmark We just used that every ultrafilter on a finite set is *principal* !

Relevance to Preference Aggregation

A similar characterisation result by Dokow and Holzman is particularly interesting since it can be considered a <u>generalisation</u> of the most famous theorem in social choice theory: *Arrow's Theorem for preference aggregation*.

To see the relevant result in judgment aggregation and for a comparison with Arrow's Theorem, consult the papers below: E. Dokow and R. Holzman. Aggregation of Binary Evaluations. *Journal of Economic Theory*, 145(2):495–511, 2010.

F. Dietrich and C. List. Arrow's Theorem in Judgment Aggregation. Social Choice and Welfare, 29(1):19–33, 2007.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem (eds.), *Logic and Philosophy Today*. College Publications, 2011.

SUMMARY OF PART B

Existential agenda char. theorems are of the following form: *There exists* a nondictatorial complete and consistent *rule* meeting certain axioms \Leftrightarrow the agenda has a certain *property*.

Both directions are of interest:

(\Leftarrow) Possibility direction: If the agenda property holds, then "reasonable" and consistent aggregation is possible. (\Rightarrow) Impossibility direction: For structurally rich domains, all seemingly "reasonable" rules are in fact dictatorial.

Possibility is proved by providing a *concrete rule* doing the job. Impossibility is (sometimes) proved using *ultrafilters*.

SUMMARY OF TODAY

We investigated two big questions, connecting the *structure of* an agenda with the (im)possibility of *consistent* aggregation.

- ▶ First, we focused specifically on the *majority rule*.
- ▶ Then, we examined the axioms characterising the majority rule, minus anonymity, and we saw a *universal characterisation result*, also called a *safety result*.
- ▶ In the second part, we took again the majority axioms, weakening anonymity to non-dictatorship, and we saw an *existential characterisation result*.

Tomorrow, fun (and lighter) stuff is coming! 🛨 🛧 🛧