JUDGMENT AGGREGATION JUNE PROJECT: SAFETY OF THE AGENDA

Zoi Terzopoulou

Institute for Logic, Language, and Computation University of Amsterdam

6/6/2018

(based on the slides of Ulle Endriss)

GOALS

Consider a given aggregation rule F (such as the majority rule).

- Which agendas Φ guarantee *consistent outcomes* for F?
- ▶ In other words... which agendas are *safe*?

The *discursive dilemma* shows that not all agendas are safe. We:

- characterise safe agendas for the majority rule
- ▶ and safe agendas for all rules meeting certain axioms

This is the problem of the *safety of the agenda*. From now on... be ready for the stars $\frac{1}{2}$!

Remember the Impossibility Theorem...

THEOREM (LIST AND PETTIT, 2002) No judgment aggregation rule for an agenda Φ with $\{p, q, p \land q\} \subseteq \Phi$ satisfies all of the axioms of anonymity,

neutrality, independence, completeness, and consistency.

But for which agendas exactly is this the case? To find out, we need a *characterisation of the class of agendas* for which satisfying A, N, I, together with consistency is (im)possible.

C. List and P. Pettit. Aggregating Sets of Judgments: An Impossibility Result. *Economics and Philosophy*, 18(1):89–110, 2002.

Agenda Properties

Two useful properties of agendas Φ (i.e., of sets of formulas):

- Median Property (MP): Φ has the MP iff every minimally inconsistent (mi) subset of Φ has size ≤ 2 .
- ▶ Simplified Median Property (SMP): iff every non-singleton mi subset of Φ is of the form $\{\varphi, \psi\}$ with $\Vdash \varphi \leftrightarrow \neg \psi$.

うして ふゆ く は く は く む く し く

Obviously, if Φ has the SMP, then it also has the MP. If Φ has the MP, it does not necessarily have the SMP. Example for the latter: $\{p, \neg p, p \land q, \neg (p \land q)\}$

CONSISTENT AGGREGATION FOR THE MAJORITY

We now see a *safety result* for a *specific aggregation rule*.

THEOREM (NEHRING AND PUPPE, 2007) Let the number of agents $n \ge 3$. The (strict) majority rule is consistent for a given agenda Φ iff Φ has the MP.

Note how the agenda in L&P's impossibility violates the MP:

$$\{p, \neg p, q, \neg q, p \land q, \neg (p \land q)\}$$

(However, deciding if an agenda has the MP is Π_2^P -complete!)

K. Nehring and C. Puppe. The Structure of Strategy-proof Social Choice. Part I: General Characterization and Possibility Results on Median Space. *Journal of Economic Theory*, 135(1):269–305, 2007.

Proof

- (\Leftarrow) Take Φ with the MP. If there exists an admissible profile $\boldsymbol{J} \in \mathcal{J}(\Phi)^n$ such that $F_{maj}(\boldsymbol{J})$ is *not consistent*, then:
 - There exists an inconsistent set $\{\varphi, \psi\} \subseteq F_{maj}(J)$.
 - ▶ So both φ, ψ must have been accepted by a strict majority.
 - Thus one individual must have accepted both φ and ψ .

• Contradiction (individual judgment sets are consistent). \checkmark (\Rightarrow) Take Φ that violates the MP. Then, there exists a minimally inconsistent set $\Delta = \{\varphi_1, \ldots, \varphi_k\} \subseteq \Phi$ with k > 2. Consider the profile J, in which individual i accepts all formulas in Δ except for $\varphi_{1+(i \mod 3)}$. Note that J is consistent. But the majority rule will accept all formulas in Δ , i.e., $F_{maj}(J)$ is not consistent. \checkmark

Agenda Safety for Classes of Rules

Instead of a single rule, suppose we are interested in a *class of rules*, for instance those corresponding to a set of *axioms*.

- *Existential Agenda Characterisation*: <u>Some</u> rule meeting the axioms is consistent for every appropriate agenda.
- ► Universal Agenda Characterisation: <u>All</u> rules meeting the axioms are consistent for every appropriate agenda.

Any real-life scenarios where these are important questions? \bigstar Now we will look into the latter, also called *safety results*.

Why the "majority safety theorem" above is a safety result? \bigstar

Example for a Safety Theorem

For the remainder of today, assume that Φ contains no tautologies, and thus no contradictions (simplifies the result). A theorem for the majority-rule axioms, minus monotonicity: THEOREM (ENDRISS ET AL., 2012) Φ is safe for all anonymous, neutral, independent, complete and complement-free aggregation rules iff Φ has the SMP.

Recall that SMP = all inconsistencies due to some $\{\varphi, \psi\}$ with $\Vdash \varphi \leftrightarrow \neg \psi$. We now give a proof for the case where *n* is *odd*.

U. Endriss, U. Grandi, and D. Porello. Complexity of Judgment Aggregation. *Journal of Artificial Intelligence Research (JAIR)*, 45:481–514, 2012.

Proof

(\Leftarrow) Take Φ with the SMP and assume some $F(\mathbf{J})$ is inconsistent. Then: $\{\varphi, \psi\} \subseteq F(\mathbf{J})$ with $\Vdash \varphi \leftrightarrow \neg \psi$. Then:

- $\varphi \in J_i \Leftrightarrow \sim \psi \in J_i$ for each individual *i*. (why? \uparrow)
- So $\varphi \in F(\mathbf{J}) \Leftrightarrow \sim \psi \in F(\mathbf{J})$ (from neutrality).
- ► Thus both ψ and $\sim \psi$ in F(J) (*contradiction* with complement-freeness).

(⇒) Take Φ that violates the SMP, and some mi $X \subseteq \Phi$. If |X| > 2, then also the MP is violated and we already know that the majority rule is not consistent. \checkmark

So we can assume $X = \{\varphi, \psi\}$. W.l.o.g., we must have that $\varphi \Vdash \neg \psi$, but $\neg \psi \nvDash \varphi$ (otherwise SMP holds).

But now there is a non-safe rule: the parity rule F_{par} accepts a formula iff an odd number of agents does. Consider a profile J with $J_1 \supseteq \{\sim \varphi, \sim \psi\}, J_2 \supseteq \{\sim \varphi, \psi\}, J_3 \supseteq \{\varphi, \sim \psi\}$. Then, $F_{par}(J) \supseteq \{\varphi, \psi\}.$

SUMMARY OF PART A

We discussed the problem of the *safety of the agenda*. Are we convinced this is an actual problem? $\stackrel{\bullet}{\leftarrow}$ We know that:

- ▶ The majority rule always produces consistent outcomes iff every possible inconsistency in the agenda can be explained in terms of just two formulas (*median property*).
- ▶ For the consistency of all rules that share the properties of the majority except for monotonicity, we simplify agendas even further and only permit inconsistencies arising from logical complements (*simplified median property*).
- Similar results hold for other combinations for axioms.