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Plan for Today

I the response in the literature to the Kannai-Peleg impossibility

• similar impossibilities

• extensions that are not connex

• weakening axioms to circumvent result

I A first look at voting

I paper presentations info

Yesterday, we saw the Kannai-Peleg Theorem.

(DOM) a � b for all b ∈ X ⇒ {a} ∪ X �̊ X

(DOM) b � a for all b ∈ X ⇒ X �̊ X ∪ {a}

(IND) X �̊ Y implies X ∪ {a} �̊ Y ∪ {a} for all a ∈ A \ (X ∪ Y )

Theorem (Kannai and Peleg, 1984)

There exists no extension satisfying both dominance and independence.
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One way around the Impossibility

We define the minmax dominance extension. Note that this is not a

connex relation.

X �̊ Y ⇔ [max(X ) � max(Y ) and min(X ) � min(Y )]

Q: why is it not connex? ({a, c} �̊ {b}? {b} �̊ {a, c}?)

Q: Is independence satisfied? Is dominance satisfied?

I (IND) if X �̊ Y , then either max(X ) � max(Y ) or

min(X ) � min(Y ), so “worst case” we get X ∪ {a}�̊Y ∪ {a}.
I (DOM) if a � b for all b ∈ X , then min(X ∪ {a}) = min(X ) and

max(X ∪ {a}) � max(X ).

I (DOM) if b � a for all b ∈ X , then max(X ∪ {a}) = max(X ), and

min(X ) � min(X ∪ {a}).
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Another Impossibility

Simple Dominance applies to expansions of singleton sets by one element:

a � b ⇒ [{a} �̊ {a, b} and {a, b} �̊ {b}.]

Strict Independence: for a ∈ A \ (X ∪ Y ),

X �̊ Y ⇒ X ∪ {a} �̊ Y ∪ {a}.

No assumption that �̊ is connex or transitive!

Theorem (Barberà and Pattanaik, 1984)

There exists no extension satisfying simple dominance and strict

independence.1

S. Barberà and P.K. Pattanaik. Extending an Order on a Set to the Power Set: Some Remarks of Kannai and Peleg’s Approach.

Journal of Economic Theory 32, 1984.

1|A| > 3 and � a linear order.
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Another Impossibility

Simple Dominance applies to expansions of singleton sets by one element:

a � b ⇒ [{a} �̊ {a, b} and {a, b} �̊ {b}.]

Strict Independence: for a ∈ A \ (X ∪ Y ),

X �̊ Y ⇒ X ∪ {a} �̊ Y ∪ {a}.

Proof.

For ⊥ suppose S-DOM and S-IND. We have a � b � c .

I (S-DOM) {a} �̊ {a, b}
I (S-IND) {a, c} �̊ {a, b, c}

I (S-DOM) {b, c} �̊ {c}
I (S-IND) {a, b, c} �̊ {a, c}

We have a contradiction.

S. Barberà and P.K. Pattanaik. Extending an Order on a Set to the Power Set: Some Remarks of Kannai and Peleg’s Approach.

Journal of Economic Theory 32, 1984.
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Maxmin-based Extensions

Simple Dominance applies to expansions of singleton sets by one element.

Restricted Independence restricts attention to comparisons of

two-element sets.

An extension is maxmin-based iff there is an ordering �̊1,2 on A1,2

satisfying simple dominance and restricted independence s.t.

X �̊ Y ⇔ {max(X ),min(X )} �1,2 {max(Y ),min(Y )}

Theorem (Barberà, Barrett, and Pattanaik, 1984)

�̊ satifies simple dominance and independence iff it is maxmin-based.

Recover the order from restriction to singletons and two-element sets.

This result shows that if we weaken dominance, we can “circumvent” the

impossibility result. Also characterises class of maxmin-based extensions!

S. Barberà, C.R. Barrett, and P.K. Pattanaik. On Some Axioms for Ranking Sets of Alternatives. Journal of Economic Theory 33,

1984.
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Two Maxmin-based Extensions: Minimax and Maximax

As always a � b � c .

I X �minimax Y ⇔ min(X ) � min(Y )

X �mxm Y ⇔ or [min(X ) = min(Y ),max(X ) � max(Y )]

• {a, c} �̊ {b, c}?
• {b} �̊ {a, c}?

I X �maximax Y ⇔ max(X ) � max(Y )

X �mxm Y ⇔ or [max(X ) = max(Y ),min(X ) � min(Y )]

• {a, c} �̊ {b, c}?
• {b} �̊ {a, c}?

Can be interpreted as attitude towards uncertainty. Minimax is

uncertainty aversion, and maximax is uncertainty appeal or more

risk-taking.

Note: indifferent if max(X ) = max(Y ) and min(X ) = min(Y ).

Jan 2021: Preference Extensions Sirin Botan



Minimax and Maximax Characterisations*

NOTE: These Thms. are incorrect as these extensions do not satisfy IND.

Top Monotonicity: ⇒ {a, c} �̊ {b, c}.
Uncertainty Aversion: ⇒ {b} �̊ {a, c}.

Theorem (Bossert, Pattanaik, and Wu, 1994)

�̊ satisfies simple dominance, independence, uncertainty aversion, and

top monotonicity iff �̊=�minimax

Bottom Monotonicity: a � b � c ⇒ {a, b} �̊ {a, c}.
Uncertainty Appeal: ⇒ {a, b} �̊ {b}.

Theorem (Bossert, Pattanaik, and Wu, 1994)

�̊ satisfies simple dominance, independence, uncertainty appeal, and

bottom monotonicity iff �̊=�maximax

W. Bossert, P.K. Pattanaik, and Y. Xu. Choice Under Complete Uncertainty: Axiomatic Characterizations of some Decision

Rules. Journal of Economic Theory 63, 1994.
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Minimax and Maximin Characterisations*

a � b � c ...

Theorem (Bossert, Pattanaik, and Wu, 2000)

�̊ satisfies simple dominance, independence, uncertainty aversion, and

top monotonicity iff �̊=�minimax

Theorem (Bossert, Pattanaik, and Wu, 2000)

�̊ satisfies simple dominance, independence, uncertainty appeal, and

bottom monotonicity iff �̊=�maximax

Q: why is IND not satisfied?

W. Bossert, P.K. Pattanaik, and Y. Xu. Choice Under Complete Uncertainty: Axiomatic Characterizations of some Decision

Rules. Journal of Economic Theory 63, 1994.

R. Arlegi. A note on Bossert, Pattanaik and Xus Choice under complete uncertainty: axiomatic characterization of some decision

rules. Economic Theory 22. 2003.
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Minimax and Maximin Characterisations*

a � b � c ...

Theorem (Bossert, Pattanaik, and Wu, 2000)

�̊ satisfies simple dominance, independence, uncertainty aversion, and

top monotonicity iff �̊=�minimax

Theorem (Bossert, Pattanaik, and Wu, 2000)

�̊ satisfies simple dominance, independence, uncertainty appeal, and

bottom monotonicity iff �̊=�maximax

Q: why is IND not satisfied?

{2, 5} �max {3, 4}

IND ⇒ {1, 2, 5} �max {1, 3, 4}

W. Bossert, P.K. Pattanaik, and Y. Xu. Choice Under Complete Uncertainty: Axiomatic Characterizations of some Decision

Rules. Journal of Economic Theory 63, 1994.

R. Arlegi. A note on Bossert, Pattanaik and Xus Choice under complete uncertainty: axiomatic characterization of some decision

rules. Economic Theory 22. 2003.
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Extensions Satisfying Dominance: Leximin and Leximax

An extension satisfies dominance (DOM) if for all X ∈ A, for all a ∈ A

1. a � b for all b ∈ X ⇒ {a} ∪ X �̊ X

2. b � a for all b ∈ X ⇒ X �̊ X ∪ {a}

Leximin first looks at the worst elements of X and Y .

I If min(X ) � min(Y ) then X �̊ Y ,

I else, eliminate min(X ) and min(Y ) and continue the procedure.

1. {a, c, d} vs. {b, c, d}
2. {a, c} vs. {b, c}
3. {a} vs. {b}

Leximax does the same with max(X ) and max(Y ).

More emphasis on min or max elements compared with maximin and

maximax: leximin never looks at max.
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Extensions Satisfying Dominance: Leximin and Leximax

Theorem (Pattanaik and Peleg, 1984)

�̊ satisfies dominance, neutrality, bottom independence, and disjoint

independence iff �̊=�L
min

Theorem (Pattanaik and Peleg, 1984)

�̊ satisfies dominance, neutrality, top independence, and disjoint

independence iff �̊=�L
max

P.K. Pattanaik, and B. Peleg. An Axiomatic Characterization of the Lexicographic Maximin Extension of an Ordering Over a Set

to the Power Set. Social Choice and Welfare 1, 1984.
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Fishburn Extension

Let’s look at extensions defined for use in voting.

X �F Y ⇔ 1. x � y for all x ∈ X \ Y and y ∈ Y ∩ X , and

2. y � z for all y ∈ X ∩ Y and z ∈ Y \ X , and

3. x � z for all x ∈ X \ Y and z ∈ Y \ X .

zyx

Suppose a � b � c � d

I {a, b, c} or {b, c , d}?
I {a, b} or {a, c}?

P.C. Fishburn. Even-chance Lotteries in Social Choice Theory. Theory and Decision 3, 1972.
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Fishburn Extension

Let’s look at extensions defined for use in voting.

X �F Y ⇔ 1. x � y for all x ∈ X \ Y and y ∈ Y ∩ X , and

2. y � z for all y ∈ X ∩ Y and z ∈ Y \ X , and

3. x � z for all x ∈ X \ Y and z ∈ Y \ X .

zyx

Interpretation: tie-breaker with linear, but unknown preferences.

{a, b} 6�̊F {a, c} because ties may be broken in the order b, a, c .

P.C. Fishburn. Even-chance Lotteries in Social Choice Theory. Theory and Decision 3, 1972.
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Gärdenfors Extension

X �G Y ⇔ 1. X ⊂ Y and x � y for all x ∈ X and y ∈ Y \ X OR

2. Y ⊂ X and x � y for all x ∈ X \ Y and y ∈ Y OR

3. X 6⊂ Y , Y 6⊂ X , and x � y for all x ∈ X \ Y

and y ∈ Y \ X

(i)

Y

X

(ii)

X

Y

(iii)

YX

I {a, b} or {a, c}?
I {a, b, c} or {a, c}?

P. Gärdenfors. Manipulation of Social Choice Functions. Journal of Economic Theory 13, 1976.
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Gärdenfors Extension

X �G Y ⇔ 1. X ⊂ Y and x � y for all x ∈ X and y ∈ Y \ X OR

2. Y ⊂ X and x � y for all x ∈ X \ Y and y ∈ Y OR

3. X 6⊂ Y , Y 6⊂ X , and x � y for all x ∈ X \ Y

and y ∈ Y \ X

(i)

Y

X

(ii)

X

Y

(iii)

YX

Note that this extension satisfies DOM. You will sometimes see DOM

referred to as the Gärdenfors principle.

P. Gärdenfors. Manipulation of Social Choice Functions. Journal of Economic Theory 13, 1976.
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What is Voting?

agent 1 a � b � c

agent 2 b � a � c

agent 3 b � c � a

Example of a rule: Borda. Gives 2 points to alternative each time it is

ranked first and 1 point if it is ranked second.

a : 3, b : 5, c : 2, so {a} is the winning set.
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Framework

I set N = {1, . . . , n} of agents

I set A of alternatives

I �i preference ranking of agent i

I A preference profile P = (�1, . . . ,�n)

I L(A)n set of all possible profiles

An irresolute voting rule f is a function from profiles to subsets of A.

f : L(A)n → 2A \ ∅
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Manipulation of Voting Rules

agent 1 a � c � b

agent 2 b � a � c

agent 3 b � c � a

agent 4 c � b � a

Suppose we use the plurality rule, which selects as winners those

alternatives that appear most at the top ⇒ {b} is winning set.

Q: What happens if agent 1 flips a and c?

Q: We have that X �K Y ⇒ X �F Y ⇒ X �G Y . If a rule is

Kelly-manipulable, what does this imply for Fishburn and Gärdenfors?

We will look at this problem in depth on Thursday!
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Manipulation of Voting Rules

agent 1 a � b � c

agent 2 b � c � a

agent 3 c � a � b

Let’s use Borda again ⇒ {a, b, c} winning.

Q: What happens when agent 1 flips a and b?

Q: We have that X �K Y ⇒ X �F Y ⇒ X �G Y . If a rule is

Kelly-manipulable, what does this imply for Fishburn and Gärdenfors?

We will look at this problem in depth on Thursday!
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Paper Presentations

I Geist and Endriss. Automated Search for Impossibility Theorems in

Social Choice Theory: Ranking Sets of Objects. 2011.

• SAT-solver used for Kannai-Peleg and related results

I Maly et al. Preference Orders on Families of Sets—When Can

Impossibility Results Be Avoided? 2018.

• looks at impossibility result when limiting attention to sets of a

certain type

I Maly. Lifting Preferences over Alternatives to Preferences over Sets

of Alternatives: The Complexity of Recognizing Desirable Families of

Sets. 2020.

• looks at the complexity of identifying certain types of sets (ex. those

from Maly, 2018 *)
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Paper Presentations

I Brandt. Set-Monotonicity Implies Kelly-Strategyproofness. 2015.

• identifies voting rules that are Kelly-SP.

I Aziz et al. On the Incompatibility of Efficiency and

Strategyproofness in Randomized Social Choice. 2014.

• impossibility-style result (building on yet another one), using

preference extensions. This one concerned with whether you can

have a SP voting rule that is also efficient/Pareto optimal.

I Brandt et al. On the Indecisiveness of Kelly-Strategyproof Social

Choice Functions. 2020.

• more in detail on Kelly-SP voting rules

I Brandl et al. Strategic Abstention Based on Preference Extensions:

Positive Results and Computer-Generated Impossibilities. 2015.

• Looks at abstention rather than submitting untruthful ranking.
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Some Notes for Presentations

I The papers vary in length, but long does not mean difficult to read.

I It’s ok if you don’t fully understand everything in the paper.

I Spend some time thinking about what aspects to present

• some proofs are interesting, some you should shield us from

• some papers have a lot of new terminology and concepts and you

may want to spend a substantial time on that (ex. SAT solving

papers)

We have 6 one-hour slots next week. Tue 10-11, 11-12, Thu 16-17,

17-18, and Fri 14-15, 15-16. Choose partner(s), paper, and slot then

email me. I’ll update the website as you pick slots.

If you have any questions (big or small), please email me!
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Last Slide

I We saw a variant of the Kannai-Peleg Theorem

I we saw that we can weaken “output” requirements (non-connex

preference relation over sets)

I we saw that we can weaken either dominance and independence to

get around the result

I we saw the Fishburn and Gärdenfors extensions

I we had a first look at strategyproofness in voting

Thursday we dive into how extensions appear in strategyproofness results.
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