Preference Extensions in Social Choice

January 2021 MoL Project

Sirin Botan
05/01/21
Institute for Logic, Language and Computation
University of Amsterdam

Plan for Today

- the response in the literature to the Kannai-Peleg impossibility
- similar impossibilities
- extensions that are not connex
- weakening axioms to circumvent result
- A first look at voting
- paper presentations info

Yesterday, we saw the Kannai-Peleg Theorem.
(DOM) $a \succ b$ for all $b \in X \Rightarrow\{a\} \cup X \dot{\succ} X$
(DOM) $b \succ a$ for all $b \in X \Rightarrow X \dot{\succ} X \cup\{a\}$
(IND) $X \dot{\succ} Y$ implies $X \cup\{a\} \succsim \subset \cup\{a\}$ for all $a \in A \backslash(X \cup Y)$
Theorem (Kannai and Peleg, 1984)
There exists no extension satisfying both dominance and independence.

One way around the Impossibility

We define the minmax dominance extension. Note that this is not a connex relation.

$$
X \succeq Y \Leftrightarrow[\max (X) \succeq \max (Y) \text { and } \min (X) \succeq \min (Y)]
$$

Q: why is it not connex? $(\{a, c\} \succsim\{b\} ?\{b\} \succsim\{a, c\}$? $)$
Q: Is independence satisfied? Is dominance satisfied?

- (IND) if $X \dot{\succ} Y$, then either $\max (X) \succ \max (Y)$ or $\min (X) \succ \min (Y)$, so "worst case" we get $X \cup\{a\} \doteq Y \cup\{a\}$.
- (DOM) if $a \succ b$ for all $b \in X$, then $\min (X \cup\{a\})=\min (X)$ and $\max (X \cup\{a\}) \succ \max (X)$.
- (DOM) if $b \succ a$ for all $b \in X$, then $\max (X \cup\{a\})=\max (X)$, and $\min (X) \succ \min (X \cup\{a\})$.

Another Impossibility

Simple Dominance applies to expansions of singleton sets by one element:

$$
a \succ b \Rightarrow[\{a\} \stackrel{\circ}{\succ}\{a, b\} \text { and }\{a, b\} \stackrel{\circ}{\succ}\{b\} .]
$$

Strict Independence: for $a \in A \backslash(X \cup Y)$,

$$
X \stackrel{\circ}{\succ} Y \Rightarrow X \cup\{a\} \stackrel{\circ}{\succ} Y \cup\{a\} .
$$

No assumption that $\grave{\succeq}$ is connex or transitive!

Theorem (Barberà and Pattanaik, 1984)

There exists no extension satisfying simple dominance and strict independence. ${ }^{1}$
S. Barberà and P.K. Pattanaik. Extending an Order on a Set to the Power Set: Some Remarks of Kannai and Peleg's Approach. Journal of Economic Theory 32, 1984.
${ }^{1}|A| \geqslant 3$ and \succeq a linear order.

Another Impossibility

Simple Dominance applies to expansions of singleton sets by one element:

$$
a \succ b \Rightarrow[\{a\} \stackrel{\circ}{\succ}\{a, b\} \text { and }\{a, b\} \stackrel{\circ}{\succ}\{b\} .]
$$

Strict Independence: for $a \in A \backslash(X \cup Y)$,

$$
X \stackrel{\circ}{\succ} Y \Rightarrow X \cup\{a\} \stackrel{\circ}{\succ} Y \cup\{a\} .
$$

Proof.

For \perp suppose S-DOM and S-IND. We have $a \succ b \succ c$.

- $(S-D O M)\{a\} \dot{\succ}\{a, b\}$
- (S-DOM) $\{b, c\} \succ$ \succ $\{c\}$
- $(\mathrm{S}-\mathrm{IND})\{a, c\} \stackrel{\succ}{\succ}\{a, b, c\}$
- $(\mathrm{S}-\mathrm{IND})\{a, b, c\} \stackrel{\circ}{\succ}\{a, c\}$

We have a contradiction.
S. Barberà and P.K. Pattanaik. Extending an Order on a Set to the Power Set: Some Remarks of Kannai and Peleg's Approach. Journal of Economic Theory 32, 1984.

Maxmin-based Extensions

Simple Dominance applies to expansions of singleton sets by one element. Restricted Independence restricts attention to comparisons of two-element sets.

An extension is maxmin-based iff there is an ordering $\grave{ذ}_{1,2}$ on $\mathcal{A}_{1,2}$ satisfying simple dominance and restricted independence s.t.

$$
X \doteq Y \Leftrightarrow\{\max (X), \min (X)\} \succeq_{1,2}\{\max (Y), \min (Y)\}
$$

Theorem (Barberà, Barrett, and Pattanaik, 1984)

\succeq satifies simple dominance and independence iff it is maxmin-based.
Recover the order from restriction to singletons and two-element sets.
This result shows that if we weaken dominance, we can "circumvent" the impossibility result. Also characterises class of maxmin-based extensions!
S. Barberà, C.R. Barrett, and P.K. Pattanaik. On Some Axioms for Ranking Sets of Alternatives. Journal of Economic Theory 33, 1984.

Two Maxmin-based Extensions: Minimax and Maximax

As always $a \succ b \succ c$.

- $X \succeq_{\text {minimax }} Y \Leftrightarrow \min (X) \succ \min (Y)$

$$
\text { or }[\min (X)=\min (Y), \max (X) \succeq \max (Y)]
$$

- $\{a, c\} \succsim\{b, c\}$?
- $\{b\} \stackrel{\circ}{\succ}\{a, c\}$?
- $X \succeq_{\text {maximax }} Y \Leftrightarrow \max (X) \succ \max (Y)$ or $[\max (X)=\max (Y), \min (X) \succeq \min (Y)]$
- $\{a, c\} \succsim\{b, c\}$?
- $\{b\} \succsim\{a, c\}$?

Can be interpreted as attitude towards uncertainty. Minimax is uncertainty aversion, and maximax is uncertainty appeal or more risk-taking.

Note: indifferent if $\max (X)=\max (Y)$ and $\min (X)=\min (Y)$.

Minimax and Maximax Characterisations*

NOTE: These Thms. are incorrect as these extensions do not satisfy IND.
Top Monotonicity: $\Rightarrow\{a, c\} \stackrel{\circ}{\succ}\{b, c\}$.
Uncertainty Aversion: $\Rightarrow\{b\} \stackrel{\circ}{\succ}\{a, c\}$.

Theorem (Bossert, Pattanaik, and Wu, 1994)

\succsim satisfies simple dominance, independence, uncertainty aversion, and top monotonicity iff $\grave{\succeq}=\succeq_{\text {minimax }}$

Bottom Monotonicity: $a \succ b \succ c \Rightarrow\{a, b\} \stackrel{\circ}{\succ}\{a, c\}$.
Uncertainty Appeal: $\Rightarrow\{a, b\} \stackrel{\circ}{\succ}\{b\}$.

Theorem (Bossert, Pattanaik, and Wu, 1994)

$\grave{\text { satisfies simple dominance, independence, uncertainty appeal, and }}$ bottom monotonicity iff $\grave{\succeq}=\succeq_{\text {maximax }}$

[^0]
Minimax and Maximin Characterisations*

$a \succ b \succ c \ldots$

Theorem (Bossert, Pattanaik, and Wu, 2000)

$\grave{¿}$ satisfies simple dominance, independence, uncertainty aversion, and top monotonicity iff $\grave{\succeq}=\succeq_{\text {minimax }}$

Theorem (Bossert, Pattanaik, and Wu, 2000)
$\grave{\text { satisfies simple dominance, independence, uncertainty appeal, and }}$ bottom monotonicity iff $\succeq=\succeq_{\text {maximax }}$

Q: why is IND not satisfied?

```
W. Bossert, P.K. Pattanaik, and Y. Xu. Choice Under Complete Uncertainty: Axiomatic Characterizations of some Decision
Rules. Journal of Economic Theory 63, }1994
R. Arlegi. A note on Bossert, Pattanaik and Xus Choice under complete uncertainty: axiomatic characterization of some decision
rules. Economic Theory 22. 2003.
```


Minimax and Maximin Characterisations*

$a \succ b \succ c \ldots$

Theorem (Bossert, Pattanaik, and Wu, 2000)

$\grave{\text { satisfies simple dominance, independence, uncertainty aversion, and }}$ top monotonicity iff $\grave{\succeq}=\succeq_{\text {minimax }}$

Theorem (Bossert, Pattanaik, and Wu, 2000)

$\grave{¿}$ satisfies simple dominance, independence, uncertainty appeal, and bottom monotonicity iff $\succeq=\succeq_{\text {maximax }}$

Q: why is IND not satisfied?
$\{2,5\} \succ_{\text {max }}\{3,4\}$
IND $\Rightarrow\{1,2,5\} \succeq_{\text {max }}\{1,3,4\}$
W. Bossert, P.K. Pattanaik, and Y. Xu. Choice Under Complete Uncertainty: Axiomatic Characterizations of some Decision Rules. Journal of Economic Theory 63, 1994.
R. Arlegi. A note on Bossert, Pattanaik and Xus Choice under complete uncertainty: axiomatic characterization of some decision rules. Economic Theory 22. 2003.

Extensions Satisfying Dominance: Leximin and Leximax

An extension satisfies dominance (DOM) if for all $X \in \mathcal{A}$, for all $a \in A$

1. $a \succ b$ for all $b \in X \Rightarrow\{a\} \cup X \dot{\succ} X$
2. $b \succ a$ for all $b \in X \Rightarrow X \dot{\succ} X \cup\{a\}$

Leximin first looks at the worst elements of X and Y.

- If $\min (X) \succ \min (Y)$ then $X \stackrel{\succ}{\succ}$,
- else, eliminate $\min (X)$ and $\min (Y)$ and continue the procedure.

1. $\{a, c, d\}$ vs. $\{b, c, d\}$
2. $\{a, c\}$ vs. $\{b, c\}$
3. $\{a\}$ vs. $\{b\}$

Leximax does the same with $\max (X)$ and $\max (Y)$.
More emphasis on min or max elements compared with maximin and maximax: leximin never looks at max.

Extensions Satisfying Dominance: Leximin and Leximax

Theorem (Pattanaik and Peleg, 1984)

$\grave{\text { i satisfies dominance, neutrality, bottom independence, and disjoint }}$ independence iff $\grave{\succeq}=\succeq_{\text {min }}^{L}$

Theorem (Pattanaik and Peleg, 1984)
$\grave{\text { satisfies dominance, neutrality, top independence, and disjoint }}$ independence iff $\grave{\succeq}=\succeq_{\text {max }}^{L}$
P.K. Pattanaik, and B. Peleg. An Axiomatic Characterization of the Lexicographic Maximin Extension of an Ordering Over a Set to the Power Set. Social Choice and Welfare 1, 1984.

Fishburn Extension

Let's look at extensions defined for use in voting.

$$
\begin{aligned}
X \succeq^{F} Y \Leftrightarrow & \text { 1. } x \succeq y \text { for all } x \in X \backslash Y \text { and } y \in Y \cap X \text {, and } \\
& \text { 2. } y \succeq z \text { for all } y \in X \cap Y \text { and } z \in Y \backslash X \text {, and } \\
& \text { 3. } x \succeq z \text { for all } x \in X \backslash Y \text { and } z \in Y \backslash X .
\end{aligned}
$$

Suppose $a \succ b \succ c \succ d$

- $\{a, b, c\}$ or $\{b, c, d\}$?
- $\{a, b\}$ or $\{a, c\}$?
P.C. Fishburn. Even-chance Lotteries in Social Choice Theory. Theory and Decision 3, 1972.

Fishburn Extension

Let's look at extensions defined for use in voting.

$$
\begin{aligned}
X \succeq^{F} Y \Leftrightarrow & \text { 1. } x \succeq y \text { for all } x \in X \backslash Y \text { and } y \in Y \cap X, \text { and } \\
& \text { 2. } y \succeq z \text { for all } y \in X \cap Y \text { and } z \in Y \backslash X, \text { and } \\
& \text { 3. } x \succeq z \text { for all } x \in X \backslash Y \text { and } z \in Y \backslash X .
\end{aligned}
$$

Interpretation: tie-breaker with linear, but unknown preferences. $\{a, b\} \dot{\not}^{F}\{a, c\}$ because ties may be broken in the order b, a, c.

[^1]
Gärdenfors Extension

$$
\begin{aligned}
X \succeq^{G} Y \Leftrightarrow & \text { 1. } X \subset Y \text { and } x \succeq y \text { for all } x \in X \text { and } y \in Y \backslash X \text { OR } \\
& \text { 2. } Y \subset X \text { and } x \succeq y \text { for all } x \in X \backslash Y \text { and } y \in Y \text { OR } \\
& \text { 3. } X \not \subset Y, Y \not \subset X, \text { and } x \succeq y \text { for all } x \in X \backslash Y \\
& \text { and } y \in Y \backslash X
\end{aligned}
$$

(i)

(ii)

(iii)

- $\{a, b\}$ or $\{a, c\}$?
- $\{a, b, c\}$ or $\{a, c\}$?

Gärdenfors Extension

$$
\begin{aligned}
X \succeq^{G} Y \Leftrightarrow & \text { 1. } X \subset Y \text { and } x \succeq y \text { for all } x \in X \text { and } y \in Y \backslash X \text { OR } \\
& \text { 2. } Y \subset X \text { and } x \succeq y \text { for all } x \in X \backslash Y \text { and } y \in Y \text { OR } \\
& \text { 3. } X \not \subset Y, Y \not \subset X, \text { and } x \succeq y \text { for all } x \in X \backslash Y \\
& \text { and } y \in Y \backslash X
\end{aligned}
$$

(i)

(ii)

(iii)

Note that this extension satisfies DOM. You will sometimes see DOM referred to as the Gärdenfors principle.

[^2]
What is Voting?

$$
\begin{array}{ll}
\text { agent } 1 & a \succ b \succ c \\
\text { agent 2 } & b \succ a \succ c \\
\text { agent } 3 & b \succ c \succ a
\end{array}
$$

Example of a rule: Borda. Gives 2 points to alternative each time it is ranked first and 1 point if it is ranked second.
$a: 3, b: 5, c: 2$, so $\{a\}$ is the winning set.

Framework

- set $N=\{1, \ldots, n\}$ of agents
- set A of alternatives
- \succeq_{i} preference ranking of agent i
- A preference profile $\mathbf{P}=\left(\succeq_{1}, \ldots, \succeq_{n}\right)$
- $\mathcal{L}(A)^{n}$ set of all possible profiles

An irresolute voting rule f is a function from profiles to subsets of A.

$$
f: \mathcal{L}(A)^{n} \rightarrow 2^{A} \backslash \emptyset
$$

Manipulation of Voting Rules

$$
\begin{array}{ll}
\text { agent 1 } & \\
\text { agent 2 } & \\
\text { a } & b \succ c \succ b \succ c \\
\text { agent 3 } & \\
\text { agent 4 } & \\
\text { a } \succ c \succ b \succ a
\end{array}
$$

Suppose we use the plurality rule, which selects as winners those alternatives that appear most at the top $\Rightarrow\{b\}$ is winning set.

Q: What happens if agent 1 flips a and c ?

Q: We have that $X \succeq^{K} Y \Rightarrow X \succeq^{F} Y \Rightarrow X \succeq^{G} Y$. If a rule is Kelly-manipulable, what does this imply for Fishburn and Gärdenfors?

We will look at this problem in depth on Thursday!

Manipulation of Voting Rules

$$
\begin{array}{ll}
\text { agent } 1 & \\
\text { agent 2 } & \\
\text { agent } 3 \succ c \succ c \succ a \\
\text { a } & c \succ a \succ b
\end{array}
$$

Let's use Borda again $\Rightarrow\{a, b, c\}$ winning.
Q: What happens when agent 1 flips a and b ?
Q: We have that $X \succeq^{K} Y \Rightarrow X \succeq^{F} Y \Rightarrow X \succeq^{G} Y$. If a rule is Kelly-manipulable, what does this imply for Fishburn and Gärdenfors?

We will look at this problem in depth on Thursday!

Paper Presentations

- Geist and Endriss. Automated Search for Impossibility Theorems in Social Choice Theory: Ranking Sets of Objects. 2011.
- SAT-solver used for Kannai-Peleg and related results
- Maly et al. Preference Orders on Families of Sets-When Can Impossibility Results Be Avoided? 2018.
- looks at impossibility result when limiting attention to sets of a certain type
- Maly. Lifting Preferences over Alternatives to Preferences over Sets of Alternatives: The Complexity of Recognizing Desirable Families of Sets. 2020.
- looks at the complexity of identifying certain types of sets (ex. those from Maly, 2018 *)

Paper Presentations

- Brandt. Set-Monotonicity Implies Kelly-Strategyproofness. 2015.
- identifies voting rules that are Kelly-SP.
- Aziz et al. On the Incompatibility of Efficiency and Strategyproofness in Randomized Social Choice. 2014.
- impossibility-style result (building on yet another one), using preference extensions. This one concerned with whether you can have a SP voting rule that is also efficient/Pareto optimal.
- Brandt et al. On the Indecisiveness of Kelly-Strategyproof Social Choice Functions. 2020.
- more in detail on Kelly-SP voting rules
- Brandl et al. Strategic Abstention Based on Preference Extensions: Positive Results and Computer-Generated Impossibilities. 2015.
- Looks at abstention rather than submitting untruthful ranking.

Some Notes for Presentations

- The papers vary in length, but long does not mean difficult to read.
- It's ok if you don't fully understand everything in the paper.
- Spend some time thinking about what aspects to present
- some proofs are interesting, some you should shield us from
- some papers have a lot of new terminology and concepts and you may want to spend a substantial time on that (ex. SAT solving papers)

We have 6 one-hour slots next week. Tue 10-11, 11-12, Thu 16-17, 17-18, and Fri 14-15, 15-16. Choose partner(s), paper, and slot then email me. I'll update the website as you pick slots.

If you have any questions (big or small), please email me!

Last Slide

- We saw a variant of the Kannai-Peleg Theorem
- we saw that we can weaken "output" requirements (non-connex preference relation over sets)
- we saw that we can weaken either dominance and independence to get around the result
- we saw the Fishburn and Gärdenfors extensions
- we had a first look at strategyproofness in voting

Thursday we dive into how extensions appear in strategyproofness results.

[^0]: W. Bossert, P.K. Pattanaik, and Y. Xu. Choice Under Complete Uncertainty: Axiomatic Characterizations of some Decision Rules. Journal of Economic Theory 63, 1994.

[^1]: P.C. Fishburn. Even-chance Lotteries in Social Choice Theory. Theory and Decision 3, 1972.

[^2]: P. Gärdenfors. Manipulation of Social Choice Functions. Journal of Economic Theory 13, 1976.

